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A review is made of the di!raction theory of the trailing edge noise generated by
a #at-plate airfoil of zero-thickness and non-compact chord, according to which
the sound is attributed to the scattering of a &&frozen'' pattern of turbulence wall
pressure swept over the edge in the mean #ow. Extension is made to determine the
sound produced by very low Mach number #ow over the edge of an airfoil of "nite
thickness. In applications it is desirable to represent the noise in terms of a surface
integral over the airfoil involving a Green's function and a metric of the edge #ow
that can be calculated locally using the equations of motion of an incompressible
#uid. It is argued that the appropriate metric for a rigid airfoil is the incompressible
&&upwash'' velocity (determined by the Biot}Savart induction formula applied to
the boundary layer vorticity outside the viscous sublayer), and not the surface
pressure. Formulae for calculating the noise are given when the airfoil thickness is
acoustically compact, and for both three- and two-dimensional edge #ows.

The theory is illustrated by a detailed discussion of a two-dimensional vortex
#ow over an airfoil with a rounded trailing edge. The problem is simple enough to
be treated analytically, yet is also suitable for validating computational edge noise
schemes. ( 1999 Academic Press
1. INTRODUCTION

The &&self-noise'' generated by an airfoil in a nominally steady, high Reynolds
number #ow is attributed to the instability of the airfoil boundary layers and their
interactions with the trailing edge [1}3]. The edge is usually a source of
high-frequency sound associated with smaller-scale components of the boundary
layer turbulence. Low-frequency contributions from a trailing edge, that may in
practice be related to large-scale vortical structures shed from an upstream
appendage, are small because the upwash velocity they produce in the
neighborhood of the edge tends to be cancelled by that produced by vorticity shed
from the edge [4, 5]. If the surface S of the airfoil is rigid, and is at rest in a mean
stream, the far-"eld acoustic pressure p@(x, t),p(x, t)!p

0
at position x and time

t [p(x, t) being the pressure and p
0

its mean value in the acoustic far "eld] is given
formally by Curle's [6, 7] formula
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where the "rst integral is over the volume V occupied by the #uid, the surface
element dS

j
is directed into V,

p@
ij
"(p!p

0
)d

ij
!p

ij
, (2)

and p
ij

is the viscous stress tensor. The square brackets [ ] in equations (1) denote
evaluation of the contents at the retarded time t!Dx!y D/c

0
, where c

0
is the speed

of sound. The direct sound generated by the turbulence quadrupoles [8, 9] is
represented by the "rst integral in equation (1). At low Mach numbers (e.g.
underwater) ¹

ij
+o

0
v
i
v
j
(o

0
and v being respectively the mean #uid density and the

velocity), and the quadrupole noise is usually negligible compared with that from
the edge. The latter is contained in the surface integral in equation (1), and for an
acoustically compact surface (for example, an airfoil whose chord is much smaller
than the typical acoustic wavelength), the edge noise is equivalent to that generated
by a distribution of dipoles on S, whose strength per unit area is the unsteady
surface pressure [8, 9]. In that case the ratio of the acoustic powers generated by the
edge and the volume quadrupoles &O(1/M2), where M&v/c

0
;1 is the

characteristic Mach number [6]. At high frequencies, when it is not permissible to
assume the chord to be compact, the relative e$ciency of the edge noise is increased
to O(1/M3) [10].

For the compact chord airfoil the dipole strengths can be determined to
a su$cient approximation for use in equation (1) by a preliminary calculation of the
#ow near the edge in which the in#uence of compressibility is ignored. However,
although equation (1) is exact for a non-compact airfoil, it is not permissible to
neglect compressibility when specifying the dipole strengths in the surface integral.
Therefore, edge noise predictions have traditionally been made by one of two
alternative procedures. In the "rst, it is assumed that the trailing edge is well
approximated by a semi-in"nite, rigid plate. A calculation is then performed in
which the free-"eld hydrodynamic pressure p

I
, say, generated by the boundary layer

turbulence is di+racted by the edge. If p
I
were known exactly this procedure would

yield an accurate prediction of the edge generated sound. Hitherto, it has not been
possible to prescribe with su$cient accuracy the in#uence of the edge on the
hydrodynamic pressure, and it has usually been assumed that the turbulence is
swept past the edge by the mean #ow as a frozen distribution of vorticity [1, 11}15].
In the second method, the noise is calculated by the acoustic analogy theory of
Lighthill [8, 9] using a compact Green's function tailored to the trailing edge
geometry [16, 17] [as opposed to the free space Green's function used in Curle's
equation (1)]. The sound can then be expressed directly in terms of the vorticity in
the edge #ow (calculated as if the #ow is incompressible); this approach also enables
the frozen approximation of the "rst method to be extended to more complicated
trailing edge geometries [17].

Modern computational procedures will soon yield accurate predictions of the
high Reynolds number hydrodynamic motion near a trailing edge, and it is
appropriate to re-evaluate the kind of numerical data that will be required to make
con"dent predictions of the far"eld sound. We have suggested above that an
incompressible approximation to the surface pressure is not su$cient when the
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surface is not compact. This is because a non-compact body extends into the
acoustic far "eld, and any representation of the sound as a Curle (or Kirchho!) type
of surface integral must ensure that the boundary conditions on the surface
continue to be satis"ed in the far "eld. This can be done either by using a Green's
function tailored to the airfoil characteristics or [as in equation (1)] by using the
free-space Green's function, but with p@

ij
known to the required precision in the

acoustic domain. In the latter case, the dipole strength must be prescribed with full
account taken of compressibility, which is not normally possible because it
presupposes a knowledge of the acoustic "eld at the surface [18]. In fact, the dipole
strength can safely be estimated from an incompressible edge #ow model only when
the airfoil is acoustically compact. In general, the surface source strength turns out
to depend on the upwash produced by the unsteady #ow. When this is known (in an
incompressible approximation), the edge noise can be found by using an acoustic
Green's function whose normal derivative vanishes on the rigid surface of the
airfoil.

In this paper, the thin-plate di!raction theory of trailing edge noise is
"rst reviewed (section 2), and predictions are used to exhibit explicitly the
failure of approximations based on equation (1). The general edge noise pro-
blem at low Mach numbers is then formulated in terms of the theory of vortex
sound, and it is demonstrated how the sound can be determined from
an incompressible approximation to the &&upwash'' velocity (section 3). The theory
is illustrated by a detailed application (section 4) to determine the noise produced
in a low Mach number vortex #ow past the rounded trailing edge of a thick
airfoil.

2. THIN-PLATE MODEL OF TRAILING EDGE NOISE

2.1. DIFFRACTION THEORY [11, 12]

Consider turbulent trailing edge #ow over the upper surface x
2
"#0 of the

rigid half-plane x
1
(0, x

2
"0, where the main stream outside the boundary

layers has low subsonic speed ; in the x
1
-direction (Figure 1). The calculation of

the edge noise is formulated as a scattering or di!raction problem, in which
the pressure p

I
, say, that would be produced by the same turbulent #ow if the

surface were absent, is scattered by the edge. The scattered pressure p@ includes
both acoustic and hydrodynamic components, the latter accounting for the
modi"cation of the near"eld pressure by the surface. The condition that the normal
velocity vanishes on the half-plane is taken in the high Reynolds number
approximation

Lp
I
/Lx

2
#Lp@/Lx

2
"0 on S, (3)

where S denotes the &&upper'' and &&lower'' surfaces (x
1
(0, x

2
"$0). In

turbulence-free regions, and when the mean stream Mach number M";/c
0

is
very small, pressure #uctuations p(x,u) of frequency u (with suppressed time factor



Figure 1. Co-ordinates for trailing edge noise.
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e~*ut) satisfy the Helmholtz equation

(+ 2#i2
0
)p"0, (4)

where i
0
"u/c

0
is the acoustic wavenumber. The presence of the boundary layer

and the turbulence are ignored except insofar as they are responsible for the
pressure p

I
; in particular p@ (x, u) is assumed to satisfy equation (4) everywhere, and

the scattering of sound by the shear #ow is neglected. This approximation is not
valid at very high frequencies when the acoustic wavelength is comparable to the
thickness of the boundary layer.

The pressure p
I
(x,u) must be an outgoing solution of Helmholtz's equation in

x
2
)0, in the region &&below'' the boundary layer sources; on x

2
"0, p

I
is equal to

half the boundary layer blocked pressure p
s
that the same turbulence would exert on

an in"nite plane wall at x
2
"#0, and we can write

p
I
(x, u)"

1
2 P

=

~=

p
s
(k, u)ei(k,x!c (k

1
)x

2
) dk

1
dk

3
, x

2
)0, k"(k

1
, 0, k

3
), (5)

where c (k)"Ji2
0
!k2 is either real with sign sgn(u) or positive imaginary. The

problem of calculating p@ now reduces to the determination of the scattered
pressure [from equations (3) and (4)] produced by the interaction of each Fourier
component 1

2
p
s
(k, u)ei(k,x!c (k)x

2
) of p

I
with S.

The calculation can be performed by the Wiener}Hopf procedure [19], which
supplies the following representation of the total perturbation pressure (which is
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"nite at the edge of the half-plane):
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where K"JK2
1
#k2

3
. The "rst integral represents the direct pressure p

I
(generated

by the boundary layer &&in the absence of S''), and is strictly valid only outside the
boundary layer in x

2
)0 or x

2
'd, where d is the boundary layer thickness.

The integration with respect to K
1
can be performed explicitly when x

2
P$0. It

is zero in the wake (x
1
*0), where the scattered pressure vanishes. For x

1
(0 the

integration contour is displaced to !iR in the K
1
-plane, capturing the residue

contribution from the pole at K
1
"k

1
!i0 and an integral along the branch cut of

J(i2
o
!k2

3
)1@2#K

1
, which extends from !(i2

0
!k2

3
)1@2, just below the real axis, to

!iR. The branch-cut integral can be expressed in terms of the error function
erf(x)"(2/Jn) :x

0
e~j2 dj [20]. The total surface pressure is then found to be

p(x
1
,$0,x

3
,u)"
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2 PP
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D1@2J(i2
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1
)] eik,x d2k, x

1
(0. (7)

The argument of the error function has positive real part for all real values of k
1
,

so that the error function +1 as x
1
P!R. Thus, pP0 on the lower surface

(x
2
"!0) far upstream of the edge, whereas pPp

s
on the surface x

2
"#0

exposed to the turbulent stream. This occurs at distances upstream of the edge
exceeding the characteristic eddy dimension. If the impinging boundary layer
turbulence is assumed to be frozen during convection over the edge, measurements
of the blocked pressure p

s
several boundary layer thicknesses upstream of the edge

can be used in the second integral of equation (6) to predict the edge noise.
At large distances from the edge the integrations with respect to K

1
and k

3
in the

second integral of equation (6) may be performed by the method of stationary phase
[19, 21]. This yields the edge-scattered acoustic pressure in the Chase}
Chandiramani [11, 12] form,
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0
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1
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where the angles h, t de"ning the radiation direction x/ DxD are indicated in Figure 1.
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The integrand in this formula is singular at k
1
"i

o
x
1
/ DxD, where the

stationary-phase approximation breaks down. However, this occurs when k
1

lies in
the acoustic domain, i.e., for a blocked pressure Fourier component
p
s
(k

1
, i

o
cost,u) that actually represents a sound wave generated by the boundary

layer quadrupoles in the absence of the edge. Such contributions can be neglected
at small Mach numbers. When the blocked surface pressure is regarded as entirely
hydrodynamic, the remaining integral in equation (8) is dominated by wavenumbers
k
1
&u/;Ai

o
, and equation (8) reduces to

p@(x,u)+
!i1@2

o
sin1@2t sin (h/2) e*io

DxD

J2 DxD P
=

~=

p
s
(k

1
, 0,u) dk

1
Jk

1
#i0

, DxDPR. (9)

This representation is suitable for expressing of the edge noise in terms of the
hydrodynamic (i.e., incompressible) component of the blocked pressure measured
upstream of the edge.

This is usually done by referring p
s
(k

1
, 0,u) to the blocked surface pressure

wavenumber-frequency spectrum P(k,u) [22]. It is assumed that a "nite section
!1

2
¸(x

3
(1

2
¸, say, of the trailing edge is wetted by the turbulent #ow, where¸ is

much larger than the boundary layer thickness d. Then, for statistically stationary
turbulence

Sp
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s
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1
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1
,0,u), ¸Ad, (10)

where the angle brackets S T represent an ensemble average, and the asterisk
denotes complex conjugate. The acoustic pressure frequency spectrum '(x,u) of
the edge noise [de"ned such that Sp@2(x, t)T":=

0
' (x,u) du] is then calculated

from equation (9) to be given by

'(x, u)+
u¸ sin2(h/2) sint

2nc
0
DxD2 P
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~=

P(k
1
,0,u) dk

1
Dk

1
D

, M@1, DxDPR. (11)

The peak acoustic pressures are radiated in the &&forward'' direction h"$n.
Numerical predictions are made by introducing a convenient empirical model for
P(k,u) (see, e.g. references [22, 23]), although this will not be discussed here.

2.2. APPLICATION OF CURLE'S EQUATION

To derive these results from Curle's representation (1), the "rst, quadrupole,
integral on the right is discarded, and p@

ij
is approximated by ( p!p

0
)d

ij
at high

Reynolds numbers. Then for each component of the sound of frequency u,
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L
Lx

2
P

=

~=

dy
3 P

0

~=

[p (y
1
, y

3
)]

eii
o
Dx!yD

4nDx!yD
dy

1
, y"(y

1
, 0, y

3
), (12)



TRAILING EDGE NOISE 217
where
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is the pressure jump across the half-plane.
At large distances from the wetted edge,
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The "rst line of equation (14) implies that the principal contribution to
the integral is from those components of [p (y

1
, y

3
)] with length scales &O(1/i

o
).

In other words, a correct evaluation of the integral requires the retention of
phase information in [ p] characterizing #uctuations in the surface pressure over
distances of the order of the acoustic wavelength, which typically exceeds the scale
of the hydrodynamic motions by a factor 1/MA1. In this integral phase
interference with the exponential factor e!ii

o
x 'y/ DxD is responsible for correcting the

directivity of the sound from that of a free-"eld dipole &sint sin h,cosH (H
being the angle between x/ DxD and the x

2
-axis) orientated normal to the airfoil, to

sin1@2t sin (h/2), which conforms to the rigid-body surface condition (Lp@/Lx
n
"0)

in the far "eld.
If an attempt is made to approximate the surface pressure jump [ p(y

1
, y

3
)] in

Curle's formula (12) by its value for incompressible #ow, it would be equivalent to
setting.
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in equation (14), where F(u) is the net normal force exerted on the #uid by the
half-plane. This force may be determined exactly from the solution (6) to be given
by

F(u)"!2ni P
=

~=

p
s
(k

1
,0,u) Ji

o
#k

1
Ji

o
(k

1
!i0)

dk
1
. (16)

It is unbounded in the incompressible limit in which i
o
P0, and cannot be

reliably computed at low Mach numbers by a numerical simulation of the #ow,
being determined by the unsteady surface pressures over a distance from the edge of
the order of the acoustic wavelength.

A correct prediction of the edge noise from Curle's formula is possible only when
the surface pressures are known within the acoustic domain. To use equation (14),
[pL (i

o
x
1
/ DxD, i

o
x
3
/ Dx)D)] must be evaluated from the exact formula (6), in the form
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whose use in equation (14) leads directly to equation (8).

2.3. KIRCHHOFF INTEGRAL REPRESENTATION

The scattered pressure p@(x,u) of section 2.1. satis"es the Helmholtz equation (4)
everywhere. By introducing a Green's function G(x, y,u), which is any solution of

(+ 2#i2
o
)G"d(x!y) (18)

with outgoing wave behaviour, p@(x,u) may be represented by the following
Kirchho! integral over S [24]:

p@(x,u)"Q
S
AG(x, y,u)

Lp@
Ly

n

(y,u)!p@(y,u)
LG
Ly

n

(x, y,u)B dS(y) , (19)

where the normal derivatives L/Ly
n

are directed into the #uid. This equation
determines the scattered sound provided p@ and Lp@/Ly

n
are known on S. However,

for an arbitrary choice of the Green's function G(x, y,u), and for the reasons
discussed above for Curle's equation, acceptable predictions of the sound are
possible only if the variations of p@ and Lp@/Ly

n
on S are speci"ed correctly over

length scales comparable to the acoustic wavelengths.
For example, one might attempt to express the radiation entirely in terms of the

surface pressure (already determined, say, by means of a subsidiary calculation
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valid in the neighborhood of the edge) by using a &&pressure release'' Green's
function that vanishes on S. The "rst term in the integrand of equation (19) is then
absent, and p@(x,u)"!Q

S
p@(y,u) LG(x, y,u)/Ly

n
dS(y) would be an exact

representation of the sound. But if p@(y, u) in the integrand is known only in an
incompressible approximation, the predicted behaviour of p@(x,u) at large
distances from the edge would be governed by the behavior of G (x, y,u) as
DxDPR, and the far"eld scattered pressure would therefore be predicted to vanish
on S, whereas for a rigid surface Dp@ (x,u)D actually assumes its largest values there!
In order for this latter behavior to be predicted, su$cient phase information
characterizing changes in p@(y,u) on S over distances of the order of the acoustic
wavelength, must be included to ensure that a correct estimate is obtained for the
asymptotic behavior of the integral (19) as DxDPR. This requirement is equivalent
to the correction of the free "eld dipole directivity (cosH,sint sin h) of equation
(14) brought about by the use of the exact formula (17) for [p] in equation (12).

The need for such detailed phase information in the prescribed boundary values
of p@ and Lp@/Ly

n
can be avoided by using a Green's function that already satis"es

the relevant boundary conditions on S. It can then be expected that surface values
calculated from an incompressible model of the #ow will be su$cient to determine
the far"eld sound at low Mach numbers. For the rigid half-plane the Green's
function should have vanishing normal derivative on S (reciprocity actually implies
that LG/Lx

n
"0, LG/Ly

n
"0 respectively on x

1
(0, x

2
"0 and y

1
(0, y

2
"0).

Then the second term in the integrand of equation (19) is absent, and condition (3)
gives
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1
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where

[G(x, y,u)]"G(x, y
1
,#0, y

3
,u)!G(x, y

1
,!0, y

3
,u) (21)

is the jump in the value of G across the half-plane.
The integrals in equation (20) may be evaluated by taking Lp

I
/Ly

2
to have its

value when compressibility is ignored, provided that those turbulence eddies
responsible for the edge noise are always very much closer than an acoustic
wavelength from the edge, which is always the case at su$ciently small Mach
numbers. It then becomes appropriate to expand Green's function in terms of the
non-dimensional source distance i

o
Jy2

1
#y2

2
(&Jy2

1
#y2

2
/acoustic wavelength)

from the edge. When the observation point x is in the acoustic far "eld we "nd [25]
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where, for Dx!y
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in which i
3

is a unit vector parallel to the x
3
-axis (the edge), and the function

u*(x)"Jr sin (h/2),JDxD sin1@2t sin (h/2) (24)

is equivalent to the velocity potential of incompressible #ow around the edge
(in the anticlockwise direction) expressed in terms of polar co-ordinates
(x

1
, x

2
)"r(cos h, sin h). The component G

0
represents the radiation from a point

source at y when scattering by the half-plane is neglected. The component
G

1
provides the "rst correction due to the presence of the half-plane, and (since

[G
0
],0) gives the leading approximation to the edge noise when used in equation

(20).
By introducing the representation (5) of p

I
in terms of the blocked pressure, we

"nd, using equation (23) in equation (20),
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The y
3
-integral equals 2nd(k

3
); the y

1
-integral must be treated as the Fourier

transform of a generalized function [26], and evaluated by integration by parts,
when it is found to be equal to

!1
2Dk

1
DS

ni
k
1
#i0

.

When compressible e!ects in the speci"cation of the blocked pressure are
neglected, it may be assumed that i

o
@k

1
for all relevant values of k

1
in the

wavenumber integral. Then c(k)PiDk
1
D and equation (25) reduces to precisely the

low Mach number approximation (9) obtained previously by di!raction theory.
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3. ARBITRARY TRAILING EDGE GEOMETRY

3.1. VORTEX SOUND THEORY

The di!raction theory of section 2.1 is conveniently extended to an airfoil
of "nite thickness (Figure 2) by means of the theory of vortex sound [25], in which
the total enthalpy B, rather than the pressure or density, is taken as the
fundamental acoustic variable. When the mean #ow Mach number is small enough
that the convection of sound may be ignored, and when the mean #uid density is
constant,

A
1
c2
o

L2

Lt2
!+ 2BB"div (X?v), (26)

where X(x, t)"curl v is the vorticity. In those regions where the unsteady motion is
irrotational (X"0) yet still, perhaps, predominantly non-linear, it can be described
by a velocity potential /(x, t), say, which satis"es B"!L/Lt. In the acoustic far
"eld, the small amplitude pressure #uctuations are determined in terms of B by the
linear relation

p@(x, t)
o
0

+!

L/
Lt

,B(x, t). (27)

Equation (26) relates #uctuations in B to the vorticity and velocity. The radiation
condition requires the solution to have outgoing wave behavior, and for each
Fourier component of frequency u it can be expressed as the sum of a Kirchho!
integral representing a contribution from the surface S of the airfoil [as in equation
(19)] plus the direct radiation from the vortex sources:

B(x, u)"Q
S
A
LB
Ly

n

(y, u)G(x, y, u)!B(y, u)
LG
Ly

n

(x, y, u)B dS(y)

!PG(x, y,u) (div (X?v) (y, u)) d3y, (28)

where G(x, y,u) is an outgoing solution of equation (18).
Let the Green function satisfy the rigid surface condition LG/Ly

n
"0 on S, and

use the divergence theorem to transform the volume integral in equation (28) as
follows:

P Gdiv (X?v) d3y"!Q
S

G(X?v) ) n dS(y)!P (X?v) )+Gd3y,



Figure 2. Low Mach number turbulent #ow near the trailing edge of an airfoil of "nite thickness.
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where the unit normal n on S is directed into the #uid. Then

B(x,u)"Q
S

G(x,y,u)A
LB
Ly

n

#(X?v) )nB (y,u) dS(y)#P
LG
Ly

(x,y,u) ) (X?v) (y,u) d3y.

(29)

Very close to S viscous e!ects are dominated by shear stresses, and the momentum
equation can be taken in Crocco's form,

Lv/Lt#+B"!X?v!l curlX,

where l is the kinematic viscosity. But v,0 on S when the airfoil is rigid and at
rest. Hence equation (29) becomes

B(x,u)"P
LG
Ly

(x, y,u) ) (X?v) (y, u) d3y!l Q
S

G(x, y,u) curl X ) ndS (y),

and the identity GcurlX,curl (GX)#X?+G and the divergence theorem then
yield

B(x,u)"P
LG
Ly

(x, y,u) ) (X?v) (y,u) d3y!l Q
S

X (y,u)?
LG
Ly

(x, y,u) ) ndS (y) .

(30)

The surface integral is the contribution to the radiation from the unsteady skin
friction on S, and is usually ignored when the Reynolds number is large.

The remaining integrals can be evaluated at low Mach numbers by expanding
the Green function in the form (22), provided the characteristic acoustic wavelength
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is much larger than the airfoil thickness. The principal contribution is from
G

1
(x, y,u) which, however, must now be taken in the form [17]

G
1
(x, y,u)"

!1

nJ2ni

Ji
o
u*(x)U*(y)

Dx!y
3
i
3
D3@2

eii
o
Dx!y

3
i
3
D , (31)

where the potential u*(y),u*(y
1
, y

2
) of equation (23) is replaced by

U*(y)"U*(y
1
, y

2
, y

3
), which describes incompressible potential #ow around the

edge of the airfoil, such that

U*(y
1
, y

2
, y

3
)Pu*(y

1
, y

2
) as Jy2

1
#y2

2
PR.

We now "nd, in the acoustic far "eld,

p@(x,u)+
!o

o
i1@2
o

sin1@2t sin (h/2)eii
o
DxD

nJ2ni DxD G P
LU*(y)

Ly
) (X?v) (y, u) d3y

!l Q
S

X (y,u)?
LU*(y)

Ly
) n dS(y)H, DxDPR. (32)

The radiated sound automatically satis"es the rigid surface boundary condition
on the distant parts of the airfoil, so that the vorticity X and the velocity v in the
integrands can be approximated by their values calculated for incompressible #ow
near the edge of the airfoil. The term in the brace brackets of equation (32) is
proportional to the net normal force F(u) exerted on the #uid by the airfoil. As
noted in section 2.2, this force increases in proportion to the square root of the
acoustic wavelength; in the present notation it is given by [17]

F(u)+2o
oS

i
ni

o
GP

LU*(y)
Ly

) (X?v) (y,u) d3y!v Q
S

X(y,u)?
LU*(y)

Ly
) ndS(y)H.

3.2. DIFFRACTION THEORY

The evaluation of equation (32) requires the vorticity and velocity "elds to be
known in the neighborhood of the edge. An alternative representation of the sound,
which is analogous to equation (9) for the #at-plate airfoil, can be derived by
consideration of the di!raction theory of section 2.1. We shall not, however, assume
the boundary layer turbulence to be frozen during convection past the edge, but
will introduce an &&incident'' disturbance B

I
which is de"ned to be the exact solution

of equation (26) in the absence of the airfoil when the vorticity X and velocity v on
the right-hand side of equation (26) have their exact values.

To calculate B
I
, the interior of the airfoil is imagined to be replaced by #uid with

no acoustic sources, wherein the actual motion is determined by the source
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distribution X?v outside S. Then for each component of frequency u,

B
I
(x,u)"

1
4n P

V

eii
o
Dx!yD

Dx!yD
L
Ly

) (X?v) (y,u) d3y, (33)

where V is the #uid volume outside S. When compressibility is neglected in the
source region near the edge,

L
Ly

) (X?v),
L2v

i
v
j

Ly
i
Ly

j

!+ 2A
1
2

v2B, (34)

and therefore, because v vanishes on S, the acoustic pressure p
I
+o

o
B

I
in the far

"eld corresponds to the quadrupole "eld

p
I
(x,u)+

!i2
o
eii

o
DxD

4nDxD A
x
i
x
j

DxD2
!

1
2

d
ijB P

V

o
o
(v

i
v
j
) (y, u) d3y, DxDPR, (35)

which is negligible compared to the edge-generated sound.
The e!ect of the airfoil is calculated by setting

B(x, t)"B@(x, t)#B
I
(x, t), (36)

where B@ satis"es the homogeneous form of equation (26) (no sources). B@ and B
I
are

related by the no-slip boundary condition on S, which the momentum equation
gives in the form

+ B@#+B
I
"!l curlX on S. (37)

Thus, when Kirchho!'s formula (19) is used (with p@ replaced by B@), we "nd

B@(x, u)"!Q
S

G(x, y,u) A
LB

I
Ly

n

#l curlX ) nB (y,u) dS(y), (38)

provided LG/Ly
n
"0 on S.

Taking the low Mach number expansion of the Green's function, the
leading-order term of which is given by equation (31), we "nd

p@(x,u)+
o
o
i1@2
o

sin1@2t sin (h/2)eii
o
DxD

nJ2ni DxD

]P
S
AU*(y)

LB
I

Ly
n

(y, u)#lX (y,u)?
LU*(y)

Ly
) nBdS(y), DxDPR, (39)
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where the integrand is to be evaluated using incompressible approximations for
LB

1
/Ly

n
and X.

This prediction of the far-"eld sound is identical to that given by equation (32).
Indeed, because LU*/Ly

n
"0 on S, the following relations are readily seen to

transform the "rst term of the integral of equation (39) into the corresponding term
in equation (32):

div (U*+B
I
!B

I
+U*),U*+ 2B

I
!B

I
+ 2U*,U*+ 2B

I
+!U*div (X?v) ,

where the "nal approximation follows from the incompressible limit of equation
(26).

By setting i
o
"0 in equation (33) we derive a local incompressible representation

of B
I
, from which it is readily deduced that

+B
I
#X?v"curl P

V

curl (X?v) d3y
4nDx!yD

,!curl P
V
A
LX

Lt
!l+ 2XB

d3y
4nDx!y D

,

(40)

where use has been made of the curl of the incompressible momentum equation
Lv/Lt#+B"!X?v!l curlX. In the viscous sublayer, close to the surface of
the airfoil, the motion becomes linear and

LX/Lt!l+ 2X+0.

Outside the sublayer viscous di!usion is negligible, and l+ 2X may be discarded
from the integrand. Hence, we can introduce an &&upwash velocity'' v

I
by means of

the Biot}Savart formula [27],

v
I
(x, t)"curl P

Vd

X(y, t) d3y
4nDx!y D

, (41)

where the integration is con"ned to the boundary layer vorticity in the non-linear
region <d outside the viscous sublayer. On S and within the volume of the airfoil,
Lv

I
/Lt"!+B

I
, in terms of which the far-"eld sound becomes

p@(x,u)+
o
o
uJii

o
sin1@2t sin (h/2) eii

o
DxD

nJ2n DxD Q
S

U*(y) v
In

(y,u) dS(y), DxDPR, (42)

where v
In
"v

I
) n. Note that in applications to problems in which, for the purpose

of calculation, the whole motion is regarded as inviscid, de"nition (41) makes it
clear that in calculating v

I
the bound vorticity on S must be excluded from the

integral.
Equation (42) generalizes the Chase}Chandiramani formula (9) for the #at-plate

airfoil, to which it reduces when S is a semi-in"nite half-plane. To see this it is
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necessary to note that, in an incompressible approximation of the #ow near the
edge, the incident pressure p

I
of equation (5) is the solution of

+ 2p
I
"!o

0

L2v
i
v
j

Lx
i
Lx

j

,!o
o
div (X?v)!o

o
+ 2 A

1
2

v2B
when the presence of the airfoil is ignored. Hence B

I
"p

I
/o

o
#1

2
v2, where v is the

#uid velocity, which vanishes on and within S where, accordingly,

Lv
I

Lt
"!+ B

I
,

!1
o
o

+p
I
. (43)

When v
In

in equation (41) is replaced by (1/io
o
u)Lp

I
/Ly

n
the "rst line of equation (25)

is recovered, leading to our previous result (9).
For a time-stationary random #ow past the edge we can introduce a frequency

correlation function R
vv

(y, y@,u) that satis"es

Sv
In
(y,u) v*

In
(y@,u@ )T"R

vv
(y, y@,u) d(u!u@). (44)

The acoustic pressure frequency spectrum [de"ned as for equation (11)] then
becomes

U(x,u)+
o2
o
u3 sint sin2 (h/2)

n3c
o
DxD2 Q

S

R
vv

(y, y@,u)U*(y)U*(y@) dS (y) dS(y@ ), u'0.

(45)

3.3. TWO-DIMENSIONAL SOURCE DISTRIBUTIONS

We record here the modi"cations of formulae given above when the aeroacoustic
sources and trailing edge can be regarded as two-dimensional, with no dependence
on the spanwise coordinate x

3
. At very small Mach numbers, the dominant

component of the Green's function whose normal derivative vanishes on S is
obtained by integrating equation (31) over !R(y

3
(R. When x lies in the

acoustic far "eld the integration can be performed by the method of stationary
phase, which yields [5]

G
1
(x, y,u)+!

u*(x)U*(y)
nDxD

eii
o
DxD
,

!sin (h/2)U*(y)
nDxD1@2

eii
o
DxD , (46)

where now x"(x
1
, x

2
), y"(y

1
, y

2
).
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Thus, the two-dimensional analog of equation (32) is the cylindrically spreading
wave "eld

p@(x,u)+
!o

o
sin (h/2) eii

o
DxD

nDxD1@2 GP
LU*(y)

Ly
) (X?v) (y,u) d2y

!l Q
S

X(y,u)?
LU*(y)

Ly
) n ds(y)H, DxDPR,

where ds'0 is the line element on the airfoil pro"le in the x
1
x
2
-plane. This has the

simple time-domain form

p@(x, t)+
!o

o
sin (h/2)

nDxD1@2 CP
LU*(y)

Ly
) (X?v)(y, t) d2y!l Q

S

X(y, t)?
LU*(y)

Ly
) nds(y)D ,

which decays in amplitude like 1/ DxD1@2 at the large distances from the edge, and
where the term in the square brackets [ ] is evaluated at the retarded time t!DxD/c

o
.

For inviscid (or very high Reynolds number) #ow we can take

p@(x, t)+
!o

o
sin (h/2)

nDxD1@2 CP
LU*(y)

Ly
) (X?v)(y, t) d2yD . (47)

Similarly, the di!raction theory formulae (38) and (42) have the corresponding
representations

p@(x, t)+
o
o
sin (h/2)
nDxD1@2 Q

S

U*(y) C
LB

I
Ly

n

(y, t)D ds

,!

o
o
sin (h/2)
nDxD1@2 Q

S

U*(y) C
Lv

In
Lt

(y, t)Dds, DxDPR, (48)

where the skin friction contribution has been discarded.

4. ROUNDED TRAILING EDGE

Rounded or bevelled trailing edges, of the type depicted in Figure 3(a), are
frequently used in experimental studies of trailing edge noise at low Mach numbers
[1, 28, 29]. The simpli"ed geometry is suitable for validating numerical methods for
edge noise prediction. When the Mach number is small enough for the edge #ow to
be regarded as incompressible, it is necessary to be able to determine numerically
the velocity and vorticity distribution near the edge, or equivalently, the &&upwash''
velocity v

In
. In this section the procedure is illustrated for a highly simpli"ed

two-dimensional edge #ow that can be treated analytically.



Figure 3. (a)Airfoil of thickness h with a rounded trailing edge section of length l. (b) Mapping the
region outside a rectangular airfoil onto the upper-half of the f-plane.
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4.1. FORMULATION

A line (or &&point'') vortex of circulation C is parallel to the edge of the airfoil and
convects in the mean #ow. Except very close to the edge, the airfoil has uniform
thickness h and its &&upper'' and &&lower'' surfaces coincide with the planes
x
2
"$1

2
h. The upper surface is rounded over the interval !l(x

1
(0, and

meets the lower surface at A: x
1
"0, x

2
"!1

2
h [Figure 3(a)]. At large distances

from the airfoil the mean #ow is at speed ; in the x
1
-direction, and the mean

circulation around the airfoil is assumed to be adjusted to make A a stagnation
point.

Viscosity is ignored in the body of the #uid, so that the two-dimensional motion
of the vortex can be determined by mapping the #uid region bounded by the airfoil
in the complex plane of z"x

1
#ix

2
onto the upper-half of the f-plane. To do this

we introduce the complex function

f (f, b)"!

4
n(1#b)2 Af#

b!1
2 BJf#b Jf!1#

1
n

lnCAf#
b!1

2 B
#Jf#bJf!1D!

i
2
!

1
n

lnA
1#b

2 B , b"constant'!1. (49)
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The transformation

z/h"f (f,b)

maps the exterior of the semi-in"nite airfoil of uniform rectangular cross-section
and thickness h shown in Figure 3(b) onto Im f'0, such that the boundary points
C, A, B, D on S correspond respectively to the points C@, A@, B@, D@ on the real f-axis.

It may then be veri"ed that the composite transformation

z
h
"

1
(1#a)

[ f (f, 1)#a f (f,b)], a'0, b'#1, (50)

where a is a second constant, maps the real f-axis onto an airfoil pro"le S whose
upper and lower surfaces coincide with x

2
"$1

2
h respectively for Re f(!b and

Re f'1. The interval !b(Re f(!1 maps into an upper &&rounded'' section of
the trailing edge [as in Figure 3(a)] which terminates at f"!1 at the top of
a vertical end-face (x

1
"0, !1

2
h(x

2
(!1

2
h#D) of thickness D, that

corresponds to the interval !1(Re f(1. The constants a and b are determined
by the prescribed values of the ratios l/h and D/h. For the calculations presented in
this paper we take

a"600, b"86.9370 (51)

for which l/h"4 andK D/h"0.0074. The corresponding airfoil pro"le is that shown
in Figure 3(a) (because D@h the end-face cannot be distinguished).

When the edge A is a stagnation point, the complex velocity potential of the
mean #ow is readily con"rmed to be given by

w
m
"

!;h
n (1#a) C1#

4a
(1#b)2D (f!1)2, (52)

which becomes asymptotically w
m
+;z when DzDAh. The vortex C is convected by

the mean #ow and by the induced velocity "eld of &&image'' vortices in the airfoil. If
A is also a stagnation point of the unsteady #ow, i.e., if the unsteady Kutta
condition is applied there, additional vorticity is shed from A, and will also
in#uence the motion of C. We "rst consider the motion and sound generation in the
absence of vortex shedding.

4.2. NO VORTEX SHEDDING

Let z
o
(t) denote the complex position of C at time t. The velocity potential of the

(incompressible) #ow produced by C is

wC"
!iC
2n

Mln (f!f
o
)!ln (f!f*

o
)N ,
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where f
o
"f(z

o
) is the image of z

o
in the f-plane, and the asterisk denotes complex

conjugate. The complex potential of the velocity component of the motion of
C produced by image vorticity is obtained by subtracting the &&self-potential''
(!iC/2n) ln (z!z

o
) from wC . The equation of motion of C is accordingly obtained

in the form

dz*
o

dt
"

!iC
2n C

fA
o

2f@
o

!

f@
o

f
o
!f*

o
D#A

dw
m

dz B
o

, (53)

where the su$x &&o'' implies evaluation at z"z
o
, and the primes indicate

di!erentiation with respect to z. This equation must be integrated numerically to
determine the path of the vortex, and it is convenient to do this in the f-plane, where
it is equivalent to

df*
o

dt
"

!iCf@*
o

2n C
fA
o

2f@
o

!

f@
o

f
o
!f*

o
D#A

dw
.

df B
o

Df@
o
D2 . (54)

The solid curve in Figure 4(a) depicts the calculated path when the vortex is
released at a large distance upstream of the edge, above the airfoil at a stand-o!
distance d"1

2
h from the upper surface. The vortex initially translates along a path

parallel to the upper #at surface of the airfoil at speed ;#u, where

u"C/4nd . (55)

The results discussed below are obtained for u"!0.1;. This corresponds
roughly to a typical large #uctuation velocity close to the wall of a turbulent
boundary layer [30]. The trajectory shown in Figure 4(a) was computed (using
a fourth order Runge}Kutta scheme [20]) by adjusting the value of f

o
far upstream

of the edge to make the initial stand-o! distance d (determined in terms of f
o

by
equation (50)] equal to 1

2
h. The vortex location is indicated in the "gure at di!erent

non-dimensional times ;t/h, measured from the instant that it crosses x
1
"0.

Two other trajectories are also shown in the "gure. The &&frozen'' path
corresponds to the Chase}Chandiramani approximation [11, 12], in which
turbulent structures are assumed to translate past the edge at a uniform mean
convection velocity parallel to the airfoil. The position of the vortex on this path
has been calculated by taking the uniform convection velocity to be;#u (not;),
i.e., its &&exact'' value when located above the #at section of the surface of the airfoil.
The path labelled &&rdt'' is determined by neglecting the in#uence of image vortices
on the motion of C, whose equation of motion is now equation (53) with the
omission of the "rst of the two terms on the right-hand side. This corresponds to
the approximation of &&rapid distortion theory'', where each turbulent element is
assumed to convect across an inhomogeneous region at the local mean stream
velocity [31, 32]; for the purpose of this illustration it has again been assumed that
the mean velocity far from the edge is ;#u. In all cases, therefore, the vortex
passes by the edge at approximately the same speed.



Figure 4. Trajectories of the vortex C past the trailing edge when u"!0)1;, l/h"4, d/h"0)5. (b)
Acoustic pressure signatures p/Mo

o
(C/h)2 sin (h/2)Jh/ Dnx D/8N; d/h"0)5; i/;"!0)1.
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Sound is generated by the vortex principally during its passage past the edge, and
can be calculated from either of the formulae (47) or (48), by noting that the
transformation (50) implies that

U*(y)"Re G!fS
h

n (1#a) A1#
4a

(1#b)2BH , (56)

where f is the image of z"y
1
#iy

2
, and y"(y

1
, y

2
).

Now, for a line vortex,

X"Ci
3
d (y!x

o
(t)) and v"

dx
o

dt
(t) , (57)
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where x
o
(t) is the vortex location at time t calculated from equations (53) and (54),

and we therefore "nd from equation (47),

p@(x, t )+
!o

o
C sin (h/2)
n3@2 S

h
Dx D A

1#4a/(1#b)2
1#a B

1@2
lm C

df
o

dt D , Dx DPR, (58)

where f
o

is evaluated at the retarded time [t]"t!DxD/c
o
.

The &&exact'' curve in Figure 4(b) is a non-dimensional representation of the
pressure signature plotted against ;[t]/h. Also shown are the corresponding
predictions of rapid distortion theory and the frozen approximation. The
high-frequency components of the sound are generated by scattering at the sharp
edge of the airfoil, and the peak radiated pressure occurs in the neighborhood of
[t]"0 when the vortex passes close to the edge. In the frozen approximation the
contributions to the sound at higher frequencies are reduced because small-scale
disturbances generated by the vortex, that are responsible for the high-frequency
sound, decay rapidly as the stand-o! distance of the vortex path from the edge
A increases.

The sound can also be calculated from the di!raction theory formula (48). To do
this, recall that B

I
"!L/

I
/Lt , where in two-dimensions the &&free-space'' velocity

potential /
I
of the vortex is given by

/
I
(x, t)"Re G

!iC
2n

ln (z!z
o
(t))H, z"x

1
#ix

2
.

It now follows, using the representation (56) of U*(y), that

p@(x, t)+!

o
o
C sin (h/2)
2n5@2 S

h
DxD A

1#4a/(1#b)2
1#a B

1@2
Re C

dz
o

dt Q
S

fdz
(z!z

o
)2D, DxDPR,

(59)

where the integration is in the anticlockwise direction about the contour S of the
airfoil in the z-plane, and the square brackets denote evaluation at the retarded
time t!DxD/c

o
.

The integrand &O(1/ DzD3@2) as DzDPR. The integral may therefore be evaluated
by residues by shifting the integration contour to a large circle at in"nity, thereby
capturing a contribution from the pole at z"z

o
(t). This procedure yields equation

(58). Alternatively, equation (59) can be used to investigate the contributions to the
di!raction radiation from the lower and upper surfaces of the airfoil, which are
determined by the respective contributions to the integral from the lower surface
between z"!R!ih/2 and z"!ih/2 and from the upper, rounded surface
between z"!ih/2 and !R#ih/2. These separate integrals have been evaluated
numerically, and the corresponding pressures are labelled &&lower surface'' and
&&upper'' in Figure 5 for the conditions of Figure 4, for the case in which the vortex



Figure 5. The acoustic pressure p/Mo
o
(C/h)2 sin (h/2)Jh/ Dnx D/8N and the separate contributions

from the upper and lower surfaces of the airfoil of Figure 4 when u"!0)1;, l/h"4, d/h"0)5 and
when the vortex moves along the solid (&&exact'') trajectory of Figure 4(a).
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moves along the solid (&&exact'') path of Figure 4(a). The net acoustic pressure is the
algebraic sum of these separate contributions.

4.3. INFLUENCE OF VORTEX SHEDDING

When the Kutta condition is imposed at the edge A of the airfoil during the
passage of C, vorticity is shed into the #ow and swept downstream. The acoustic
radiation consists of the direct sound generated by C, considered in section 4.2, and
the sound generated by the wake. If u@;, where u"C/4nd is the characteristic
induced velocity of the vortex, the trajectory and the acoustic pressure signature of
C are to a good approximation the same as when the vortex convects at the local
mean stream velocity (according to &rapid distortion theory'', see Figure 4). We shall
therefore adopt this approximation to examine the in#uence of the wake, by
assuming that both C and the shed vorticity convect at the local free stream velocity
along undisturbed streamlines of the mean #ow. This is equivalent to the linearized
approximation of unsteady thin airfoil theory [33, 34], where the airfoil is modelled
as a plate of in"nitesimal thickness parallel to the mean #ow (as in section 2), and all
perturbation quantities are proportional to the amplitude of an incident &&gust''. In
that case, however, both the gust and the wake vorticity convect parallel to the
plate at the same, uniform mean stream velocity, and the acoustic pressure
generated by the wake turns out to be equal and opposite to that produced by the
gust, so that there is no net radiation from the edge [4].

The shedding does not become signi"cant until C is close to the edge. It will be
modelled by releasing from the edge A a succession of elementary line vortices of



Figure 6. (a) Trajectories of the vortex C and shed vorticity in the approximation of rapid distortion
theory for u"!0)1;, l/h"4, d/h"0)5. (b) Total wake circulation as a function of time.
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circulation C
k

at discrete times t"t
k
, k*1. Let z

k
, f

k
denote respectively the

position of C
k
in the z-plane and its image in the upper-half of the f-plane at time t.

These vortices lie on the stagnation streamline emanating from A [see Figure 6(a)],
along which they convect at the local mean velocity; their images f

k
are located on

the line Re f"1 extending from the real axis into the upper half-plane. At time t
j
,

when there are j shed vortices in the #ow, the complex potential of the unsteady
component of the #ow is

w"

!iC
2n

(ln (f!f
o
)!ln (f!f*

o
)N#

j
+

!iC
k

2n
Mln (f!f

k
)!ln (f!f*

k
)N. (60)
k/1
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The Kutta condition is satis"ed at A by setting dw/df"0 at f"1. This
determines the strength C

j
of the jth vortex in terms of C and all of the previously

shed vortices according to

C
j
"!Im f

j G
C lm f

o
D1!f

o
D2
#

j~1
+
k/1

C
k

Im f
k
H . (61)

To apply this formula it is necessary to specify the initial position f
j
"1#ie of

the jth vortex on the stagnation streamline Re f"1, where e is small and positive,
whose precise value does not materially a!ect the results. At the next time step in
the calculation all of the shed vortices will have moved along this streamline by
distances determined by the mean velocity potential (52).

The results of such a calculation are illustrated in Figure 6(a), for the rounded
airfoil considered previously. The initial stand-o! distance d of C far upstream of
the edge is equal to 1

2
h, as before, and the characteristic velocity u of equation (55) is

again taken to be !0)1;. The trajectories of the incident and shed vortices are the
streamlines of the mean #ow shown in Figure 6(a). Time is measured from the
instant that C crosses x

1
"0, and the "gure shows the position of C at various

times, and also the corresponding location of the peak shed vorticity. This peak is
shed into the #ow when C is close to the edge, and translates downstream with C on
a parallel path at roughly the same velocity. Figure 6(b) indicates how the overall
circulation of the wake vorticity is opposite in sign to C and has a "nal magnitude
equal to about 80% of C. The slope of the wake circulation curve is always negative,
showing that the sign of each elementary vortex C

j
is always opposite to C.

The sound generated by the impinging vortex and the wake at the retarded time
t
j
"t!Dx D/c

o
, just after the release of the jth vortex from A, can be calculated from

either of the following generalizations of equations (58) and (59),

p@(x, t)+
!o

o
sin (h/2)

n3@2 S
h
Dx D A

1#4a/(1#b)2
1#a B

1@2

]G
Im [C $fo
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#+j

k/1
C
k
$fk
$t

],

1
2nRe[C$zo

$t
Q
S

f$z
(z~zo)2

#+j
k/1

C
k
$zk
$t

Q
S

f$z
(z~zk)2

],
DxDPR . (62)

The pressure signature is plotted against;[t]/h in Figure 7. Also plotted are the
separate contributions from C and from the wake, which are of comparable
magnitudes, but opposite in sign. Because of the progressive increase in the total
wake circulation, when ;[t]/h exceeds about 5 the separate acoustic pressures
attributable to C and the wake are e!ectively equal and opposite. Thus, the net
radiation is signi"cantly di!erent from zero only for retarded times ;[t]/h&O(1)
when C is very close to the sharp edge A. This may be contrasted with the
analogous result for an airfoil of in"nitesimal thickness [4], for which the predicted
radiations from C and from the wake are equal and opposite for all times, and linear
theory accordingly predicts that no sound is produced at the trailing edge.



Figure 7. The acoustic pressure p/Mo
o
(C/h)2 sin (h/2)Jh/ Dnx D/8N and the separate contributions

from the vortex C and the vortex wake in the rapid distortion approximation of Figure 6, when
u"!0)1;, l/h"4, d/h"0)5.
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5. CONCLUSION

In this paper, the Chase}Chandiramani di!raction theory for estimating trailing
edge noise from a #at plate, zero thickness airfoil has been extended to low Mach
number #ows past a non-compact airfoil of "nite thickness and arbitrary trailing
edge geometry. For the #at plate, the radiation can be approximated by considering
the di!raction at the edge of the boundary layer blocked pressure, which is assumed
to convect in a frozen pattern past the edge. The same approximation for a thick
airfoil signi"cantly underpredicts the high-frequency components of the sound. In
this case, the problem must be formulated in terms of the di!raction of the
boundary layer &&upwash'' velocity. Both approaches are equivalent for the
#at-plate airfoil, but the extension permits account to be taken of modi"cations of
the turbulence during convection past the variable geometry edge.

In applications it is desirable to be able to make accurate predictions of low
Mach number edge noise by "rst performing numerical simulations of the edge #ow
based on the equations for an incompressible #uid, and then inserting the results
into a suitable surface integral representation of the radiated sound. When the
airfoil chord is not acoustically compact, it is not possible to make such predictions
solely from a knowledge of the incompressible approximation to the unsteady
surface pressure. This is because the airfoil itself extends into the acoustic far "eld,
and the prescribed surface pressure must contain su$cient acoustic information to
ensure that the calculated radiation satis"es the appropriate dynamical boundary
conditions on the airfoil. In order to satisfy these conditions using incompressible
data, the surface integral should involve an acoustic Green's function that is
speci"cally tailored to the boundary conditions. For a rigid airfoil the normal
derivative of the Green's function should vanish on its surface, and the
incompressible data required to determine the far-"eld sound is the boundary layer
&&upwash'' velocity. This velocity is equal to that given by the (free-"eld) Biot}Savart
formula applied to the boundary layer vorticity lying outside the viscous sublayer.
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